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ABSTRACT ARTICLE HISTORY
Categorical data are quite common in many fields of science includ- Received 7 October 2015
ing in behaviour studies in animal science. In this article, the data Accepted 16 May 2016
concern the degree of lesions in pigs, related to the behaviour of

h ; ; KEYWORDS
these animals. The experimental design corresponded to two lev- Longitudinal data; ordinal
els of environmental enrichment and four levels of genetic lineages response; animal behaviour;
in a completely randomized 2 x 4 factorial with data collected lon- transition probabilities

gitudinally over four time occasions. The transition models used for
the data analysis are based on stochastic processes and Generalized
Linear Models. In general, these are not used for analysis of longi-
tudinal data but they are useful in many situations as in this study.
We present some aspects of this class of models for the stationary
case. The proportional odds transition model is used to construct
the matrix of transition probabilities and a function was developed
in the R system to fit this model. The likelihood ratio test was used
to verify the assumption of odds ratio proportionality and to select
the structure of the linear predictor. The methodology used allowed
for the choice of a model that can be used to explain the rela-
tionship between the severity of lesions in pigs and the use of the
environmental enrichment.

1. Introduction

The study of animal behaviour with a view to establishing better conditions for healthy
development is an important area of research in animal husbandry. Indeed, Itavo et al. [15]
report that the study of animal behaviour is of great relevance for the rational management
of animal production, including housing and diet. There is a strong interest in behaviour
studies for various animals such as cattle, goats, pigs, etc, because both of a concern for
animal welfare and for improved production and reproductive value. In these areas, it is
common to have designed experiments that aim to identify the best management tech-
niques and their relation to the behaviour of animals to improve overall performance. The
development of models and statistical methods in this area is also a topic of considerable
interest.
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The general approach is to make systematic observations of groups of animals and to
record information relating to their behaviour, such as posture, aggressiveness, etc, under
different conditions defined by one or more treatments. An intrinsic characteristic of the
data measured in these studies is that they are on a nominal or ordinal scale (categor-
ical data) and are generally polytomous, that is, there are more than two categories of
possible response. According to Agresti [1] the development of methods for categorical
data analysis began in 1960 and was initially stimulated by research related to social and
biomedical studies, but the fact is that such data can occur in any scientific area. Paulino and
Singer [25] point out that polytomous categorical data analysis is intrinsically multivari-
ate, with the analysis of univariate discrete data (using Poisson, binomial, hypergeometric,
negative binomial models) appearing as special cases. Moreover, for these particular cases,
in cross-sectional studies where there is only one evaluation of each sample unit, one can
use the techniques of Generalized Linear Models (GLM) and extensions, see [24].

On the other hand, an inherent characteristic of many animal behaviour studies is that
they are longitudinal, so it is necessary to consider a possible correlation (dependence)
between the observations made on the same animal. Two model classes commonly used for
longitudinal data analysis are marginal models [18,35] and random effects models [11,23].
Lipsitz et al. [20] use a generalized estimating equations to extend marginal models to
situations in which the response is multinomial. Hedeker [14] considers a multinomial
regression model with the inclusion of random effects to allow for the time dependency
over the repeated measurements and also to accommodate heterogeneity from excess zeros,
a common feature in categorical data that can lead to overdispersion.

However, there are situations in longitudinal studies, particularly in animal research,
where it is likely that the current state of an individual is influenced by the state of the indi-
vidual on the previous occasion (or previous occasions). The interest focusses in studying
the evolution of the individual’s response category from one moment of time to another
and assessing the possible effects of covariates. In this context, neither marginal models nor
random effects models are able to capture directly the nature of these changes of response
category over occasions, nor the effects involved in these changes. To meet this goal, we
consider Markov transition models. These models are based on stochastic processes and
different processes can be used to define transition models for different situations. Here,
we consider a discrete time discrete state process (with a finite number of states) and a
first-order Markov assumption with transition probabilities:

Ta(t—1,8) =P =b|Y4—1)=0a,Y4-2) =¢..., Y0 = 1)

=P(Yi=0b|Y¢-1)=a), (1)
where the states a, b,c,...,u € S ={1,2,...,k}, the finite set of states, and time t € T =
{0,1,..., T}, the set of observations times. Equation (1) says that an individual’s state at

time ¢, Y;, depends only on the state at the immediately preceding occasion, Y(;_1), and
not the complete history of the process. For any originating state g, these transition prob-
abilities satisfy the condition Zl;:l wap(t — 1,1) = 1, that is at each occasion the process
has to move to one of the k states, that is, the system is closed. To simplify the notation for
this first-order process, we write 7, (t — 1,1) = m4,(¢). In a more general modelling set-
ting, these transition probabilities can also be made to depend upon explanatory variables,
x, and we will consider this extension in Section 2.
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These models provide an interesting approach to describe the process of moving from
one response category to another at successive times and to assess the behaviour of the
changes on each occasion. The set of transition probabilities can be written in matrix
notation:

() m@) ... wp()

m1(t)  mn() ... wo(d)
P(t) = : : : ’

T (1) @) ... m(D)

where the argument (¢) indicates the dependence on time. For a longitudinal study, as we
have here, there are in general T transition matrices with transition probabilities changing
over time. These transition terms describe the evolution of the process over time, from
one occasion to another. However, a common simplifying assumption is that the process is
stationary, that is the transition probabilities are homogeneous over time, and the T tran-
sition matrices are stochastically equal, that is, P(t) is constant over time [33]. In this case
we can use a common transition matrix P. This is a strong assumption, but is often used
in practice because it considerably reduces the number of model parameters and provides
for a simpler presentation and interpretation of the results. So, for a stationary processes,
there are transitions from one state to another but the transition probabilities, 77,5, do not
depend on t.

For the estimation of transition probabilities, works such as [1,3,5,12,13,19] set this in
the context of contingency tables and describe how standard techniques can be used for
estimation and group comparison tests. The main advantages of this approach are its sim-
plicity and computational ease. Thus for the case where the sample is homogeneous, that
is, no explanatory variables, Anderson and Goodman [3] shows that maximum likelihood
estimates of the transition probabilities at time t are 77,4, () = n,4p(t) /1, (t — 1), which are
simply the row relative frequencies in the (f — 1) to ¢ transition table, that is, the transition
frequencies at time t, 11,3, (), divided by the marginal totals for the originating states at occa-
sion (t — 1), 1, (t — 1). Additionally, when the process is stationary over time, the marginal
transition frequencies, ), ngp(t + 1), are sufficient statistics for the estimation of the ele-
ments of the matrix P. Thus, the T (k x k) contingency tables can be collapsed over time
into a single table and 77, = ZLI nap(t)/ Zthl ng (t — 1), the row relative frequencies in
this collapsed table.

In practice, in many studies, the sample is rarely homogeneous and differences may be
captured through various factors or covariates. For example, if the animals under study are
of both sexes, we might expect different transition matrices for males and females and can
stratify our data by gender and work with the two sets of contingency tables. Standard tests
can used for comparison of the two groups. However, when we have many factors with
multiple levels, the cross-table procedure may not be useful, because successive stratifica-
tion can lead to sparse tables [1]. Also, any continuous covariates need to be categorized,
again typically leading to sparse tables.

More generally, we can specify a Transition GLM, to describe the functional relation-
ship of the transition probabilities to the set of available covariates. Here we will simply
refer to such models as transition models. Some classical references for binary response
data (just two states, i.e. k=2) are [4,9,11,12,17,19,23,36]. However, this categorization
into dichotomous data often represents a simplification of reality. Ware et al. [33] consider
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models with more than two response categories using a proportional odds model for the
transition probabilities, including the possibility of non-stationarity, that is, allowing the
transition matrix to depend on time. GLMs and extensions have some advantages over
the cross-table procedure, since the characterization of the stochastic process is given by a
conditional regression model, which can be fitted in any available software for GLM. This
conditional model framework allows to consider the correlation (time-dependence) in an
elegant analytical structure similar to other models for longitudinal data. With the use of
these transition models, we can interpret the coeflicients as the weight that each term has
on the transition probabilities, as well as having various theoretical advantages for selecting
significant covariates, testing chain order, assessing predictive ability, etc.

This work is aimed at presenting the extension of the proportional odds model to transi-
tion models applied to a longitudinal study with an ordinal response variable, the degree of
severity of lesions in pigs, taking account of observed covariates. In contrast to the model
presented by Ware et al. [33] we assume stationarity, that is the transition matrix is assumed
to be homogeneous over time, P(f) = P. Likelihood ratio tests are used to assess the appro-
priateness of the proportional odds assumption and for model selection. A function written
in the R software [26] is provided to organize data into a suitable form for fitting these
stationary models.

2. Material and methods
2.1. Material

The data arise from part of a research project conducted by Castro [7], during the months of
March to July 2014 at a commercial farm group (‘Agroceres Pic Génétiporc, Brazil’), where
male and female pigs are produced, along with semen of high genetic value. During the
research, breeding males of pure and commercial genetic lines were exposed to two rear-
ing conditions (with and without environmental enrichment) during their growth phase.
The treatment structure was ina 2 x 4 factorial, corresponding to combinations of the two
rearing conditions and four genetic lineages. The environmental enrichment, factor level
E1, was where the housing pens were equipped at different times with suspended chains, a
suspended 5 litre plastic container, and a loose 50 litre container. The objects were chosen
because they are simple, low cost, easy to fit, and not harmful to the health of the animals.
The absence of environmental enrichment, where no objects were supplied is denoted by
factor level E2. The genetic lineage levels corresponded to: L1, a synthetic line of mixed
breed animals from the races Pietrain, Duroc, Landrace and Large White; L2, a commer-
cial product, for breeding purposes, resulting from crossing between two distinct lineages
(Pietrain); L3, a genetic line coming from the Landrace breed of pigs; and L4, a genetic line
coming from the Large White breed of pigs.

The animals used in the experiment were trained in childcare and maintained through-
out the growth phase. Each group consisted of animals of the same sex, genetic line and
size (uniform groups). In all 128 animals were used across the eight treatment combina-
tions. Each treatment combination consisted of a pen with 16 animals, with the animal
being considered as the experimental unit. For the purpose of recognition and measure-
ment taking, the animals were identified with different colour and shape eartags. In the
analysis, data from 124 animals are used, because for 4 animals there was missing data.
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The response variable of interest is a score measuring lesions on the front of the animal.
According to Turner et al. [30] lesions on the front are the result of reciprocal fights or fights
in which the animal is challenged but avoids fighting. Counting the number of skin lesions
(lesion scores) has been used to give an indicator of aggressive behaviour among animals
and to investigate the development of aggression over time. Here, four evaluations were
made, the first after housing the animals in the pens and other three between the changes
of enrichment objects. The methodology used by Castro [7] was adapted from the work by
Brown et al. [6], Melotti et al. [22], Tonepohla et al. [29], and Turner et al. [31].

2.2. Methods

2.2.1. The transition model

Consider a longitudinal study in which y; = (yi1,yi2, .. ., ¥in;) is the (n; x 1) vector of
response variables for the ith individual, where on occasion ¢ there is also an associated
(p x 1) vector of covariates, xit = (X1, .. . xitp)’ . According to Diggle et al. [11], a Markov
transition model specifies a GLM for the conditional distribution of Yj; given the previous
responses and the set of covariates. For a general order q (integer) transition model we
let hit = (Vi(t—1)> Yi(t—2)> - - - » Vi(t—q)) e the (g x 1) vector of the previous responses, that
is, the g-step history for individual i at time ¢. Then, conditionally, the random variable
Yit | hir is assumed to have a distribution that belongs to a canonical exponential family,
that is:

1
f()’it | hit) = eXp ig [yiteit - b(eit)] + C()’ita¢)} > (2)

where ¢ is a dispersion parameter (supposed known), 6;; represents the canonical param-
eter, which can depend on the history h;; and covariates x;;, and b(0;;) and c(yi, ¢) are
functions depending on the specific distribution of the random variable Yj;. This is simply
the specification of a GLM with the inclusion of an index ¢, for the repeated observations.
It can be shown, as usual, that the conditional mean and variance are:

1 =E(Yy | hy) =V (0y) and v = Var(Yy | hip) = ¢b" ().

We suppose that the conditional mean and variance satisfy the following equations:

N
gu) =ni=xB+Y fihe) and vi=¢ug), (3)

r=1

where g(11$) and v(11$), respectively, represent the link function and the variance function
and f; are functions that define the structure of the transition model in the linear predictor.
Here f* denotes a function of the history (previous responses) and can be interpreted as
additional covariates in the linear predictor. To illustrate, if s =g =2, a function of the his-
tory could be Y2, f*(his @) = a1ff (ice—1)) + 0afy (ir—2)) = @1ic—1) + @2Yi—2)- In
this example, the linear predictor of a second-order transition model has the set of covari-
ates (Xjt1, . . . ,x,-tp,y,-(t_l),y,-(t_z))’, with associated parameter vector (81, .. ., By, a1, @2).
Therefore, the parameters of primary interest are represented by the vector § = (8, &),
in which B, of dimension p x 1, is associated with the covariates, and « is associated with
the history (the previous responses) and has dimension that depends on both the order g
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and the specific form of the functions f;*. In particular, the dimension of § may be greater
than (p 4 q) x 1, if we have more complex functions of the history or include interactions
between covariates, between previous responses, or both.

The suggestion in [33] is to fit a model for each occasion as in a cross-sectional study.
The 8§ parameters are specified for each occasion and are estimated from the separate max-
imizations of the likelihood functions. This allows the separate modelling of the T possible
transitions without any assumptions of stationarity.

For the stationary case, only one model is fitted using a sum of individual contribu-
tions to the likelihood function [4,11]. Assuming a Markov transition model of order g,
the conditional distribution of Y | hjs is expressed by:

f Wit | hie) = f it | yice—1)s Yit—2)s - - - YVit—g))>

so that the ith individual contribution to the likelihood is given by:

n;
fOityizs -5 Yig) H FWit | yice—1)s Yit—2)s - - > Yict—q))-
t=g+1

Note that the GLM (2) defines only the conditional distribution, so the likelihood of first g
observations f (yi1, yi2, . - - » Vig) is not determined directly, except for the case of the normal
distribution [11]. Consequently, the full likelihood function cannot be specified. Hence, an
alternative is to estimate $ and « by maximizing the conditional likelihood function:

N

N n;
[ 1fGiqrvs- - yim Vi oy =[] T1 fOu | B (4)
i=1

i=1 t=q+1

If f*(hi; o) = a,fF(hir), then g(,uﬁ) =x,B+ Y ,_, o.f(hi) is a linear function of
both parameters & and B, and to maximize the conditional likelihood function (4), it is
possible to proceed as for the estimation of parameters in a GLM for independent data, by
regressing Y, t = g + 1,. .., n;, against the (p + s) covariates (x, f;" (hit), . . ., f; (hir)). In
general, for a random variable following model (2), the algorithm proposed by Nelder and
Wedderburn [24] for fitting GLMs provides maximum likelihood estimates for the param-
eters § in the linear predictor 5 using iteratively weighted least squares. The difficulty for
the stationary case is computational, as it is necessary to prepare the data in a stacked form
and to create additional vectors of previous responses. While it is simple to stack the data,
creating the vector of previous responses with missing data (compatible with the order of
the chain and consistent with the idea expressed by the likelihood function (4)), needs
more care. This is illustrated by the R-code presented in the Appendix and for more details
see [11, 23].

In order to check the extent of historical dependence we need to test the Markov order of
the process, which for this discrete time and discrete state space setting is a Markov chain,.
The typical null hypothesis of interest is:

Hy : the chain is of order ¢ — 1;

against the alternative that the chain is of order q. For the model in which there are explana-
tory variables can use the likelihood ratio test. We write £(8, &, y) (g-1) and £(B, a, Y)(g) as
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the logarithms of the maximized likelihood functions for order (g — 1) and g, respectively.
The likelihood ratio test statistic is:

A= 2(5(/;’ &,)’)(q) - K(B)&’J’)(q—l))’ (5)

and under Hy we would expect A ~ Xf with degrees of freedom v = dim(d,) —
dim(84—1)), provided that the same number of observations are used for fitting both mod-
els. Therefore, for the lowest order model, the first g observations must be omitted. The
stationarity of the process can also be checked by an appropriate likelihood ratio test, using
the transition probability estimates and the criterion in [3].

2.2.2. Modification for ordinal data

When the response variable is the ordinal, that is, taking values in ordered set S =
{1,2,3,...,k}, as in [21] the proportional odds model can be used to describe the depen-
dence of this variable on one or more covariates. This model provides estimates of (ordered)
cumulative probabilities and can be viewed as a multivariate extension of the GLM.

Now the response of the ith individual on the tth occasion becomes a (k x 1) vector,
¥ = ittYizt - - -» Yike)'> where {yijt} represent a set of index variables for the response
categories, with y;; = 1 if the ith individual is in the jth category at the time ¢, otherwise
yijt = 0. The first-order Markov chain is characterized by adding the response category
at the preceding time as an additional covariate in the regression model. In this context,
Xit = (Xitl, Xit2s - - - » Xitps xit(p+1))/ is the vector of (p + 1) covariates associated with the ith
individual at the tth transition, and xjs(p+1) is taken as the value of the response at the
previous time point. The proportional odds transition model is:

- ( Vab(D) (%)
=Y (@)

in which A4y is an intercept (it is not a parameter of practical interest), and the vector
x represents the set of the explanatory variable values, which can also vary over time and
8 = B> Bpt> ) is the vector of the unknown parameters.

Thus, transition probabilities can be estimated as marginal models. The transition
cumulative probabilities are specified by:

) = Aab(r) t 5;x,

exp(Aap(r) + 8;%)
H(x) = b=12,...,k—1, 6
Yab () (x) T+ expOhabiy + 39 (6)

where:
Yab(®)(x) =P(Y; < b | Y—1) = a)(x) = wa1 (H)(X) + - - - + 7 (1) (%).

In order to calculate the individual probabilities for each transition we just difference
the cumulative distribution function (6):

(1) (%) = Vaj() (%) — Ya—1)(D(x) a,j €S,

allowing the construction of the transition probabilities matrices.
A necessary condition for the use of the proportional odds model is that the propor-
tional odds ratios assumption holds. In practical terms, this condition is equivalent to
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a near linear increase of the odds ratios over the ordered categories. If this assumption
is not valid the parameter estimates, associated with the covariates, change according to
the response category level. The inclusion of indices j in Equation (7) is used to define
the hypotheses relating to this assumption. Formally, we can test this condition using a
likelihood ratio test. The functional form of the model to be tested is

exp(Aab(r) + S;tx)

)(x) = i=1,2,... k-1, 7
Var (D) 1+ exp(hap(r) + §p%) ! 7)

with the hypotheses to be tested: Hy : 8;: = 8 Vj against H; : 8+ # dj; for somej # I, j, | =
1,2,...,k — 1. The likelihood ratio test statistic is:

A = —2log [%] (8)

H

in which Ly, denotes the logarithm of the likelihood function under the hypothesis Ho, the
proportional odds ratio model, and Ly, represents the logarithm of the likelihood function
under the Hj, the general cumulative logits model. If A < X(Zm),a), the hypothesis Ly, is
not rejected at level «, indicating that the proportional odds model is adequate. If the test
is significant, a more general cumulative logits model is required, with an increase in the
number of parameters. Further details about cumulative logits and proportional odds mod-
els can be seen in [1,25,32]. These models can be fitted using the computational procedures
in the R packages VGAM[34],dr m[16], m ogi t [10] and or di nal [8]. For fitting in SAS
[27] the procedures Logi st i ¢ [2] and CATMOD [28] are available and Molenberghs and
Verbeke [23] provided a macro to fit the set of transitions in the stationary case.

2.2.3. Specific models

Here, for the purpose of analysis the lesions are classified into three categories: 1 corre-
sponding to the absence of lesions; 2 corresponding to a moderate degree of lesions, and
3 corresponding to serious lesions. Moreover, with just four time occasions there are only
three transitions of order one and so it is not sensible to consider higher order chains. In
addition for simplicity, we also assume stationarity (a homogeneous process over time).
Some of the models that are considered for the linear predictor (Equation (6)) are:

e Model 1: all main effects and interaction between lineage and enrichment

Nkits = Aab + [B1 lineage; + B, enrichment, + B previous response

+ B lineage * enrichment,]. 9)
e Model 2: all main effects and no interaction
Nkits = *ab + [P1 lineage; + B, enrichment, + B, previous response,]. (10)
e Model 3: no lineage effect
Nits = Aap + [Be enrichment, 4 B previous response_]. (11)
e Model 4: previous response only

Nts = Aab + [Bs previous response,]. (12)
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e Model 5: interaction between enrichment and previous response

Nits = Aab + [Be enrichment, + B previous response,

+ Bes enrichment * previous response,,] (13)

with=1,2,3,4; e=1,2;and s=1,2,3. To choose between the various models we again used
likelihood ratio tests (at a 0.05 significance level), also taking into account the principle of
parsimony, that is choosing the simplest model among competing adequate models. In
this work, the fitting of transition models was done with the packages VGAM [34] and
ordi nal [8] available in R, version 3.2. To achieve this, a function was developed for
fitting of stationary transition models, which enables responses from previous occasions
to be embedded as additional covariates, similar to the Dr opout macro proposed by
Molenberghs and Verbeke [23]. This function (available in the appendix) is divided into
two parts. The first part is responsible for reading the data set, which is in ‘wide’ format, that
is, one column for each covariate and response (as in a cross-sectional study), and then it is
changed to the ‘long’ format (stacked), as is normally used in longitudinal studies and, in
particular, for stationary transition models. The second part of the function is responsible
for creating a vector (or vectors for chains of higher order than one) of previous responses.
In this part, n is the number of new vectors that we need create and ¢ is the number of times
that the response variable was observed.

The test of the proportional odds model, Equation (8), was implemented in the VGAM
package [34] because it allows this assessment for a set of covariates. In the or di nal
package this assessment can also be made, but only one covariate at a time. Once the model
is selected by likelihood ratio tests, we construct the matrix of transition probabilities as
in Equation (6), that is, using the coefficients of the parameters from the selected model.
For this, the or di nal package [8] has a predict function which provides the estimated
probabilities given the effects in the model.

3. Results and discussion

Initially we present an exploratory analysis of the data using contingency tables. Table 1
describes the total 372 transitions (124 animals by 3 transitions) of the degree of lesions
on the front of the animals. Thus, there are 98 transitions from the condition ‘absence
of lesion’ to others states, 169 transitions from the condition ‘moderate degree’ and 105

Table 1. Total transitions and estimates of transition probabilities
for the degree of lesions in the pig behaviour study.

Future response (t)

Previous

response (t—1) 1 1 3 Total

1 49 42 07 98
(0.50000) (0.42857) (0.07143)

2 58 91 20 169
(0.34320) (0.53846) (0.11834)

3 24 48 33 105
(0.22857) (0.45714) (0.31429)

Total 372




Downloaded by [National University of Ireland - Galway], [Idemauro de Lara] at 07:34 02 June 2016

10 I.A.R.DE LARAETAL.

transitions from ‘serious degree of lesion’. A simple chi-square test for homogeneity of the
rows of Table 1 rejects the null hypothesis (p < 0.001), showing that the rows of Table 1 are
not homogeneous, that is, the transition probabilities to the states 1, 2 and 3, depend on
the previous response. Of course, this simple test disregards the environmental enrichment
conditions and different genetic lineages that are present in this study.

Figure 1 illustrates the frequency of animals in states 1 (absence of lesion), 2 (moderate
degree), and 3 (serious degree), on each occasion of the study period, for two groups of
62 animals with and without environmental enrichment. Thus, the points at time 0 repre-
sent the initial condition, and subsequently their transitions. There is clear evidence of an
environmental enrichment effect.

We explore this further in Table 2 where we have classified the transitions of the animal
lesion condition by environmental enrichment. The estimate of the transition probability to
the good state, that is, with no lesions, is, on average, 1.80 times greater for animals with the
environmental enrichment. Focusing on the probability 731 = P(Yipr = 1 | Yig—1) = 3),
note that the odds of transition is almost 4 times higher for the animals with environmen-
tal enrichment. Similarly, the probability of leaving state 1 to state 3 is 2.19 times higher
if the animal has no environmental enrichment. We could refine this exploration by fur-
ther stratifying again by the genetic factor, but this begins to lead to rather sparse tables,
compromising the data analysis.

A better approach is through modelling of these transitions using the longitudinal ordi-
nal data models. Initially, we check the proportionality model. At this stage we included
the effects of genetic lineage, environmental enrichment and the order one Markov
covariate, previous response. The likelihood ratio test (Equation (8)) was not significant

Stage
o Absence
e Moderate
X Serious
with enrichment without enrichment
(o)
40
o X ®
[ ]
(o)
30
L]
2y
s 8
>
93- 20 X
L X °
[ ]
X
10 o
(o)
o X
X X
a T T T T T T T T
0 1 2 3 0 1 2 3
Time

Figure 1. Observed frequency of lesions degree in pigs, at each time, conditioned on previous states of
the animals, considering the effect of with and without environmental enrichment.
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Table 2. Total transitions and estimates of probabilities for the
degree of lesions in the pig behaviour, stratified by the presence or
absence of environmental enrichment.

Future response (t)

Previous
response (t—1) 1 2 3 Total
With environmental enrichment
1 34 24 03 61
(0.55738) (0.39344) (0.04918)
2 31 48 11 20
(0.34444) (0.53333) (0.12222)
3 16 11 08 35
(0.45714) (0.31429) (0.22857)
186
Without environmental enrichment
1 15 18 04 37
(0.40541) (0.48649) (0.10811)
2 27 43 09 79
(0.34177) (0.54430) (0.11392)
3 08 37 25 70
(0.11429) (0.52857) (0.35714)
186

Table 3. Transition models, null hypotheses, differences of degrees of freedom (d.f.), likelihood ratios
statistic (L.R.) and selection of models.

Models Ho d.f. L.R. statistic p-Value Selection
Model 1 vs. Model 2 Be=0 3 6.8876 0.07593 Model 2
Model 2 vs. Model 3 B=0 3 4.2238 0.23830 Model 3
Model 3 vs. Model 4 Be=0 1 6.0589 0.01384 Model 3
Model 3 vs. Model 5 Bes =0 2 8.2592 0.01609 Model 5

(p=0.41641), indicating that we could proceed with the proportional odds model and fit
different transition models to explore the effects of the covariates. Various models were fit-
ted to test the significance of the covariates and their interactions, including the particular
models listed in Section 2.2.3. The results, which are shown in Table 3, support the selec-
tion of the transition model with a linear predictor as in Equation (13). Further, the effect
of Markov covariate was also tested and found to be very significant (p-value = < 0.001).
We also considered the possibility of a chain of order 2, but the likelihood ratio test, as in
Equation (5), was not significant.

We consider the results for models 3 and 5. Here, the presentation of both is for instruc-
tional purposes. The first category was taken as the reference for all factors in these
models. Table 4 shows the parameter estimates for model 3, which has no interaction and
is therefore simpler. It is noted that both enrichment and previous response effects are
significant.

Table 5 shows the parameter estimates for the selected model 5, which includes the
interaction between previous response and enrichment, and allows us to see how much
the previous response state may influence the effect of the enrichment covariate. When
working with transition models it is always important to consider interactions of the pre-
vious response with other covariates. This role is played by the functions f*, shown in
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Table 4. Parameter estimates for the transition model 3 (Equation (11)).

Parameters Estimates Standard errors z Value p-Value
Intercepts
Aa2 0.2106 0.2116 0.995
Aa3 2.6458 0.2582 10.247
Covariates
Enrichment (E2) 0.5077 0.2070 2453 0.0142
Previous response (2) 0.5623 0.2454 2.292 0.0219
Previous response (3) 1.3265 0.2881 4.604 < 0.001

Table 5. Parameter estimates for the transition model 5 (Equation (13)).

Parameters Estimates Standard errors z Value p-Value
Intercepts
Aa2 0.2522 0.2520 1.001
Aa3 2.7404 0.2937 9.330
Covariates
Enrichment (E2) 0.6341 0.4035 1.572 0.1160
Previous response (2) 0.8617 0.3232 2.667 0.0076
Previous response (3) 0.7408 0.4283 1.730 0.0837
Previous(2): enrichment(E2) —0.6451 0.4987 —1.294 0.1957
Previous(3): enrichment(E2) 0.8144 0.5815 1.401 0.1613

Equation (3). Obviously, when selecting a model with interaction it makes no sense to
interpret the main effects parameters.

From the parameter coefficient estimates it is possible to construct the matrix of the
fitted transition probabilities, as shown in Tables 6 and 7. In general, these probabili-
ties were more favourable to animals with environmental enrichment. For example, from
Table 6, given that an animal is in the good condition (state 1 = absence of lesions),
with environmental enrichment, it has probability 0.55244 to continue in the same con-
dition, whereas if it has no environmental enrichment, this probability falls to 0.42625.
Whereas if the precondition of the animal is bad (state 3 = serious degree of lesions), it has
probability 0.24677 to change to the good state, while without environmental enrichment
this probability falls for 0.16470. This shows that there is dependence both on the previous
state and the environmental factor, although there are no genetic lineage effects.

Now, in Table 7, given that an animal is in the good condition (state 1 = absence of
lesions), with environmental enrichment, it has probability 0.56271 to continue in the same
condition, whereas if it has no environmental enrichment, this probability falls to 0.40565.
Whereas if the precondition of the animal is bad (state 3 = serious degree of lesions), it has
probability 0.38021 to change to the good state, while without environmental enrichment

Table 6. Estimates of the transition probabilities by Model 3 (Equation (11)).

Enrichment
With (E1) Without (E2)
Future response 1 2 3 1 2 3
Previous response 1 0.55245 0.38131 0.06625 0.42626 0.46830 0.10545
0.41295 0.47634 0.11071 0.29745 0.53116 0.17139

3 0.24677 0.54230 0.21092 0.16471 0.52776 0.30754
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Table 7. Estimates for the transition probabilities for model 5 (Equation (13)).

Enrichment
With (E1) Without (E2)
Future response 1 2 3 1 2 3
Previous response 1 0.56271 0.37665 0.06063 0.40565 0.48585 0.10848
2 0.35215 0.51530 0.13254 0.35466 0.51404 0.13128
3 0.38021 0.50054 0.11924 0.12596 0.50842 0.36561
o observed o observed
e predicted o predicted
with enrichment without enrichment with enrichment without enrichment
0.5 1 N ° b 05 -
0.4 R 0.4 .
03 4® ° . 0.3 ™ °
024 | ° . 02 °
0.1+ ° 0.1+ R
o 051 *° @ 05 °
£ 044 £ 04 .
ERCERNY ¢ ° ERCERN °
3 02 8 021
& 014 .o o T oqd .
osd | *° .o 05
0.4 °© 0.4+ o
034~ 03+
02 02
0.1 . °° 019 .o
1 2 3 1 2 3 1 2 a1 2 3
Future state Future state

Figure 2. Observed and predicted probabilities from the first-order Markov transition models allow-
ing for the effect of environmental enrichment. Left panel Model 3: without interaction and right panel
Model 5: with interaction.

this probability falls to 0.12596. It is also observed that for previous response 2 (moderate
degree), the transition probabilities do not differ between the treated and untreated groups.

Finally, to assess the predictive ability of the models, the observed and predicted prob-
abilities are presented in Figure 2. Comparing these figures, we see that the model 5 gives
more satisfactory results.

4. Conclusions

Transition models are a class of models that can be used in longitudinal studies when the
dependent variable is categorical. The proportional odds model is a simpler alternative
than the general model of cumulative logits, but it is necessary to check that proportionality
applies for it to be valid, and this is not always the case. In this study, the initial motiva-
tion was answering a question of practical research interest: Does the use of environmental
enrichment modify the behavioural pattern of breeding animals?. The methodology used
was appropriate to the form of data and allowed the choice of a model that can be used
to explain the relationship between the severity of lesions in pigs and the use, or not, of
environmental enrichment. It was found that the use of environmental enrichment is ben-
eficial and gives some degree of animal protection, in that if an animal has moderate or
severe lesions then the probability that it will move to a better state is, in general, higher
than for the animals receiving no enrichment.
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Appendix
HAHHHHRHHH R BHH R HHH AR HH R R R R R R R R R R 7T

### Data set preparation routine ###

HRHHHHRRHHHH B H AR H TR HA AR

#First part: changing the data structure

dat a=read. csv("| esao_frent enodf sep. csv", head=TRUE,

sep=";", dec=",")

dat a=na. omi t (dat a)

attach(data)

dat a2=r bi nd(dat a, dat a, data, data)[, 1: 3]

i d=rep(seq(l:nrowdata)), 4)

time=c(rep(’tl ,nromdata)),rep(’'t2 ,nrom data)),
rep(’t3 ,nromdata)), rep(’'t4’ ,nrowdata)))
response=c(respl, resp2, resp3, resp4)

newdat a=dat a. franme(i d, ti ne, dat a2, r esponse)
det ach(dat a)

attach(newdat a)

newr esp=r esponse

newdat a=dat a. f r ame( newdat a, new esp)

newdat a<- newdat a[ order (i d), ]

head( newdat a)
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#Second part: "dropout" function for create the
previ ous response

desl oca=functi on(dat a, response, n, t){

varind=matri x(0, nrow( dat a), n)

for(j in 1.n){
varind[,j]=c(rep(0,j),response[l:(nrow(data)-j)])
varind[ seq(j,nrow(data),t),j]=NA

if(j>1)

varind[whi ch(is.na(varind[,(j-1)]1)),]]=NA}
l'ist(’newdata’ =data.frane(data, varind))}

det ach( newdat a)

dr op=desl oca( newdat a, newdat a[ , "new esp"], 1, 4)

dr op=dat a. f rane( dr op)

head( dr op)

nanes(drop)

nanes(drop)=c("id","tinme","lineage", "enrch", "ani mal ",
"resp","newesp", "prevl")

drop=na. om t (dr op)

head( dr op)

HHHBHHAHHBHH B H A H AR R A AR R R AR R H R H R R R
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